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Abstract 

One proposed implementation of medium-caliber laser ignition employs a 
focusing ball to replace the conventional electric primer. The effects of ball size 
and igniter stand-off distance have been characterized experimentally with black 
powder pellets. Ignition threshold and delay experiments were carried out using 
4mm and &mm diameter glass beads with standoffs up to 1.5 mm. Ray tracing 
was used to model the energy distribution of a top-hat beam profile refracted 
through a focusing ball. Results of the study indicate that the tighter focus of the 
4mm bead can reduce the required laser pulse energy with little effect on the 
ignition delay. 
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1. Introduction 

In work described in a previous U.S. Army Research Laboratory (ARL) technical 
report, a 30-mm gun fixture was modified for laser ignition (Beyer and Hirhnger 
1999). In that report several concepts for the modification of 30-n-m ammunition 
to accept a laser ignition source were studied experimentally using single-round 
firings. Figure 1 depicts one of the more successful implementations where the 
electric primer has been replaced by a g&s focusing baII in a housing, along 
with the addition of an iwtion material specific for laser ignition and transfer to 
the flashtube. 

Housin 

Focusing 
Ball 1 

Ignition 
Material h 

Flashtl 
Pellets 

Abe 

Figure 1. Ball window configuration for laser ignition of 30-mm ammunition. 

In the configuration shown in Figure 1, the ignition material is pressed up 
against the focusing ball. We suspect that this configuration results in minimal 
focusing of the laser spot and that a smaller spot with greater intensity can be 
realized by incorporating a standoff between the focusing bail and the ignition 
material. The same effect might also be achieved through the use of a smaller- 
diameter ball. In this report we examine how stand-off distance and bead size 
affect the direct laser ignition of black powder pellets. While the direct ignition 
of black powder does not meet the action time* requirements (4 ms) for the 
30-mm application, these pellets are a convenient sample for this fundamental 
laboratory study and should provide some additional insight into the initial 
ignition event. 

*Action time is defined as the time from application of the firing pulse to the exit of the projectile 
from a gun barrel. 



2. Experimental Setup 

The experimental setup used for this study is shown in Figure 2. The output 
from a pulsed Nd3+ laser with a wavelength of 1.06 l.m was tnzncated using an 
adjustable iris. The laser pulse length was set to 5 ms. The truncated beam was 
directed into a glass bead that was used as a short focal-length lens. A lOO-mg 
black powder pellet was attached to a translation stage. The position of the black 
powder pellet was adjusted to provide various standoffs from the bead. Laser 
ignition experiments were carried out to determine the effect of the stand-off 
distance and bead diameter on the ignition threshold and time-to-first-light 
(TTFL). Two sets of bead/iris parameters were used. When using a 6-mm 
diameter bead, the laser beam diameter was truncated to 4.76 mm (3/W’). The 
experiments were also carried out using a 4-mm diameter bead with a truncated 
3.18~mm (l/8”) beam diameter. 

Photodiode 

Iris, 

Figure 2. Experimenta setup for the laser ignition experiment. 

Ignition threshold data were measured in groups of three data points for each 
setting of laser lamp energy and stand-off distance. An energy meter placed 
between the iris and bead was used to measure laser pulse energy before each 
experiment. The three energy measurements were averaged for each set of 
experimental conditions. Go/No-Go data were based on the ignition of black 
powder pellet. A “Go Fraction” was determined as the number of Go events 
divided by the total number of experiments for a given set of conditions (in our 
case, 3). 

The photodiode was used to generate time-to-first-light data. A transimpedance 
amplifier was used to convert current to voltage and the voltage trace was 
recorded using a digital oscilloscope. The oscilloscope was triggered using the 
leading edge of the laser pulse. A baseline light value was established for each 



trace by averaging several milliseconds in the pretrigger region. TTFL was 
defined as the time for the photodiode trace to first exceed the baseline plus 
twice the resolution of the analog-to-digital (A/D) conversion in the oscilloscope. 
An average TTFL was calculated for each data set that had a Go Fraction of 1. 

3. Experimental Data 

Table 1 shows the experimental data for the experiments using a 6-mm diameter 
bead. Each line in the table represents an average of three individual 
experiments using a common set of conditions. The pulse energy, Go Fraction, 
and TTFL are averages for each data set. Table 2 shows the corresponding data 
for the 4mm diameter bead. 

Table 1. Experimental data for study using 6-mm diameter bead. Incident laser beam 
diameter = 4.76 mm. 
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Table 2. Experimental data for study using Pmm diameter bead. Incident laser beam 
diameter = 3.18 rrun. 

Standoff 
(mm) 

Pulse Energy Go Fraction 
(mJ) (W 
192 1 14.7 

0.5 I 23 I 1 I 26.7 
0.5 14 1 27.9 
0.5 I 9.7 I 1 I 28.6 
0.5 7.4 0.67 
0.5 6.5 0.33 
0.5 4.6 0 
1.0 12 1 27.6 
1.0 10 1 32.0 
1.0 9.7 0.67 
1.0 7.2 0.67 - 
1.0 5.7 0.67 
1.0 4.6 0 - 

4. Spot Size and Spatial Energy Distribution 

As part of a Phase I Small Business Jnnovative Research (SBIR) contract 
(DAAD17-01-C-0061), Aurora Optics carried out preliminary ray tracing on the 
6-mrn focusing ball and determined a focal length of 1.4 mm (Burke 2001). In 
order to further investigate the refraction of a non-divergent beam with a top-hat 
profile through a sphere, we devised and implemented a ray-tracing model 
using the Microsoft Excel spreadsheet. For this model, the refractive index of air 
was taken to be 1.00 and the refractive index of the glass bead was taken to be 
1.51 for a laser wavelength of 1.064 p. The top-hat assumption is reasonable 
when one considers that an iris truncated the beam. Removing the wings from a 
Gaussian beam results in a much smaller variation in energy distribution across 
the cross-section of the resultant spot. Ray tracing was used to establish spot 
sizes and energy profiles for the 6-mm bead at various stand-off distances up to 
1.5 mm beyond the bead. Only spot sizes were calculated for the 4-n-m bead. 

Spot sizes were calculated using five sets of rays corresponding to the 20%, 40%, 
60%, 80%, and 100% energy contours across the spot size of the laser beam 
incident to the glass bead. Figure 3 shows the mapping of equal-area regions to 
radial ray positions. Figure 4 shows the refraction of these rays through a 6-mm 
diameter glass bead. Spot diameters were determined from the radial position of 
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Figure 3. Mapping of 20% areal contours for a top-hat energy distribution (left) to ray 
projections (right). 

the ray furthest from the beam centerline at each stand-off distance beyond the 
bead. The outermost ray at each standoff defines the boundary that contains 
100% of the refracted energy. Tables 3 and 4 list the spot sizes as a function of 
standoff for the 6-mm and 4mm bead, respectively. 

The calculated diameters only define the boundaries of the spot, but yield no 
information regarding the distribution of energy. Spatial energy distributions 
were calculated for the case of the 6-mm diameter bead by repeating the ray- 
tracing procedure for 100 rays corresponding to equal-area annular regions. 
Each ray corresponds to a 1% energy contour using a top-hat spatial profile for 
the incident laser beam. The position of each ray was calculated through the 
glass bead at specific stand-off distances. A density-of-rays approach was 
employed to determine the energy distribution beyond the glass bead using an 
assumption that each ray corresponded to 1% of the total energy in the spot at 
each standoff. A minimum thickness of 10 p was used when counting the rays 
in each annular area. Figure 5 shows the calculated energy distribution at 
4 standoff distances used for the 6-n-m bead plotted as peak laser intensity for a 
5-n-~, 100-mJ pulse. These calculations indicate enhanced perimeter laser 
intensity for standoffs at 0.0 mm and 0.5 mm. The energy distribution for 
standoffs of 1.0 and 1.5 mm indicate enhanced intensity at the middle of the spot. 
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Figure 4. Refraction of 4.7~mm diameter beam passing through 6-mm diameter glass 
bead. 
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Table 3. Spot size as a function of standoff behind a 6-mm diameter glass bead for a 
4.76-mm diameter incident laser beam. 

Position 
mm 
3.0 

Standoff Spot Radius Spot Area 
mm) mm km2) 
0.0 0.53 t 0.00877 

3.5 0.5 0.25 0.00187 
3.7* 0.7 0.16 0.00086 

0.00431 4.0 1.0 0.37 
4.5 1.5 0.81 0.02087 

*Beam Waist 

Table 4. Spot size as a function of standoff behind a 4-mm diameter glass bead for a 
3.18~mm diameter incident laser beam. 

Position 
(mm 

2.0 
2.5* 
3.0 

Standoff Spot Diameter 

64 (mm) 
0.0 0.70 
0.5 0.20 
1.0 1.09 

Spot Area 
cm2 

0.00390 
0.00031 
0.00931 

* Beam Waist 

-D-0.5-mm Standoff 
+ 1 .O-mm Standoff 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Radial position (mm) 

Figure 5. Intensity distribution calculated as a function of stand-off distance behind a 
6-mm glass bead for a 5-ms, 100-mJ laser pulse. 



Figure 6. Laser spot imaging on bum paper at bead exit stand-off distances of O.O-, 0.5-, 
l.O-, and 1.5-mm for a 6-mm diameter bead with 4.76-mm incident beam 
diameter, 5-ms pulse length, and 15-mJ average incident laser pulse energy. 



Figure 7. Laser spot imaging on burn paper at bead exit stand-off distances of O.O-, 0.5-, 
and IO-mm for a 4mm diameter bead with 3.1%mm incident beam diameter, 
5-ms pulse length, and 12-mJ average incident laser pulse energy. 
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Additional ray-tracing analysis shows that the individual rays come to a focus 
(i.e., cross the center line of the bead) at stand-off distances of 0.58 to 1.44 mm, 
with the rays originally at the perimeter of the incident beam being most strongly 
refracted and coming to a focus first. Our focus calculations are in excellent 
agreement with the Aurora Optics results, which were modeled using a smaller 
2.5 mm diameter beam. At stand-off distances of 0.0 and 0.5 mm, none of the 
individual rays have yet come to a focus, hence the appearance of the ring 
intensification pattern in the energy distribution. The standoff of 1.0 mm is near 
the center of this focusing region and displays a very large intensity near the 
center of the spot. The standoff at 1.5 mm is just beyond the focusing region. 

For these last two standoffs, the majority of the energy is localized in a much 
smaller spot than those predicted in Table 3. Referring to Figure 4, for standoffs 
beyond the beam waist, it is evident that the ray that corresponds to the original 
100% contour defines gross spot size. Having come to a focus close to the bead, 
this ray will diverge with a larger angle than those rays closer to the center of the 
beam that come to a focus further out. At the distance where the innermost rays 
come to a focus, the highly divergent rays distribute their energy over a large 
area, resulting in a large spot size with a fairly low intensity in the perimeter, but 
with a high intensity in the center where other rays are focused- or diverging 
much slower-in a small area. 

To validate the predicted tendencies, the experiments depicted in Figure 2 were 
repeated using laser bum paper in place of the black powder pellet. Bum 
patterns are presented in Figures 6 and 7 for 6-mm and 4-n-m beads, 
respectively. Both figures show a ring pattern at O-mm standoff with the intense 
portion of the spot burning smaller areas at the larger standoffs. Figure 6 can be 
compared directly with Figure 4. The more detailed ray tracing was not done for 
the 4-mm bead. The beam diameter was scaled down in proportion to the bead 
size relative to the parameters used for the 6-mm bead- both were reduced by 
33%. Thus, the spot sizes and energy distributions would scale down by 33% at 
standoffs scaled down by the same factor. 

5. Discussion 

Two important issues for laser ignition are ignition delay and threshold energy. 
Ignition delay can be especially critical for a system such as the 30-mm M230 
chain gun, whose ballistic cycle allows only a very short time in battery. The 
threshold energy requirement affects the volume and weight of the laser package 
required for effective ignition. 
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Figure 8 shows a plot of “Go Fraction” vs. total laser pulse energy incident to the 
6-mm glass bead. The data show the lowest energy thresholds for laser ignition 
of black powder occur at stand-off distances of 1.0 to 1.5 mm. Figure 9 shows 
similar data for the experiments using the 4-mm bead. For these data, the lowest 
energy thresholds occur at stand-off distances of 0.5 to 1.0 mm. Comparison of 
Figures 8 and 9 show Iaser ignition thresholds for the 4-mm bead to be 
substantially lower than those observed for the 6-n-m bead at similar stand-off 
distances (see also Tables 1 and 2). At O-r-run standoff, the ignition threshold 
energy using the 4-mm bead is half that for the 6-mm bead. The tighter focus of 
the 4-mm bead results in smaller spot sizes with greater intensity relative to the 
6-mm bead. The results of this effect can be seen in the burn patterns shown in 
Figures 6 and 7. 
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Figure 8. Plot of Go Fraction vs. total incident laser pulse energy for 6-mm bead, 4.76-mm 
beam diameter. 
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Figure 9. Plot of Go Fraction vs. total incident laser pulse energy for 4-mm bead, 3.1%mm 
beam diameter. 
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Ignition delay is characterized by TTFL. A tradeoff exists between energy 
threshold and ignition delay. At low-laser intensities, energy absorption, 
melting, and heat transfer govern the ignition event. As the laser intensity is 
increased, eventually the incident energy flux exceeds the capacity for absorption 
and heat transfer, and the excess energy is converted into kinetic energy through 
ablation of the target material. In experiments where a laser beam with a top-hat 
profile and a fixed spot size is used to ignite a propellant, one typically observes 
large ignition delays near ignition threshold, with shorter delays as the intensity 
is increased until ablation becomes significant. The ignition delay increases at 
higher ablative laser intensities. Given enough information about the propellant 
system, it is possible to model the ignition delay as a function of the energy flux, 
at least in the pre-ablative region (Cohen and Beyer 1993). 

As a first approximation one could convert the pulse energies (mJ) listed in 
Tables 1 and 2 into intensity (KW/ cm2) using the 5-ms pulse width and the gross 
spot areas listed in Tables 3 and 4. However, the data presented in Figures 5,6, 
and 7 reveal very nonuniform energy distributions once the laser pulse has been 
refracted by the focusing ball. We observe two different types of energy 
distributions as a function of stand-off distance. At short standoff, much of the 
energy is concentrated in a ring at the spot perimeter. At long standoff, a 
majority of the energy is focused in a spot that is much smaller than the gross 
spot areas indicated in Tables 3 and 4. While some shot-to-shot variation in the 
laser pulse energy is observed, the burn patterns presented in Figures 6 and 7 are 
repeatable. 

Due to the large variation in the laser intensity distribution patterns at different 
stand-off distances, there is no meaningful way to plot ignition delay vs. laser 
intensity. As an alternate presentation, Figures 10 and 11 show plots of TTFL vs. 
laser energy incident to the glass bead. We note that the average TTFL values at 
ignition threshold are similar for the two data sets at similar standoffs: 19-20 ms 
at 0 mm, 27-29 ms at 0.5 mm, and 32 ms at 1.0 mm. The similar ignition delays 
would indicate similar ignition threshold laser intensities. With the tighter focus 
of the 4-n-m bead, it is possible to achieve similar laser intensity using less 
incident energy than would be required for the 6-mm bead and without a 
significant change in ignition delay. 

6. Conclusions 

The objectives of this study were to determine the potential benefit to medium- 
caliber laser ignition by incorporating a standoff between the focusing ball and 
the material being ignited. In addition, we also investigated the differences 
between using a 6-mm and 4-mm diameter focusing ball. The experiments were 
limited to black powder pellets. Our conclusions are summarized as follows: 
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Figure 10. Time-to-first-light vs. estimated laser pulse energy for the ignition of black 
powder using a 6-mm diameter bead lens and a 4.76-mm diameter laser 
beam. 
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Figure 11. Time-to-first-light vs. estimated laser pulse energy for the ignition of black 
powder using a 4-mm diameter bead lens and a 3.Wmm diameter laser 
beam. 

l A laser pulse with a top-hat energy distribution refracting through a glass 
ball will have a nonuniform energy distribution that changes dramatically 
as a function of stand-off distance from the ball. At a short stand-off 
distance, much of the energy is concentrated in a ring at the perimeter of 
the spot. At longer standoffs, the majority of the energy is concentrated in 
a much smaller spot. 

l Ignition threshold energy decreases as standoff is increased in the range of 
oto1.5 nun. 
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l Ignition delay at threshold increases as standoff is increased in the range of 
0 to 1.5 mm. 

l With the tighter focus of the 4-mm bead, it is possible to achieve similar 
ignition delays at threshold using less incident energy than would be 
required for the 6-nun bead. 

We also note that the minimum ignition delays for both sets of data using the 
4-mm and 6-nun beads were minimized at O-mm standoff, using a pulse-energy 
substantially greater than the ignition threshold. However, experiments at 
standoff distances greater than 0 mm were carried out only at pulse energies near 
ignition threshold. It is likely that increased pulse energies at nonzero standoffs 
would result in reduced ignition delays. We cannot conclude that the minimum 
ignition delay at 0 mm is a global minimum for all standoffs or that a similar 
ignition delay requiring less energy could not be achieved at a nonzero standoff. 

Recommendations: 

l Due to its tighter focus and lower energy thresholds, the smaller 4-mm 
focusing ball should be implemented. 

l The efficacy of this new configuration should be validated through 
additional firings using a Mann barrel. 

The decrease in energy threshold can result in the implementation of a laser 
system with less volume and mass. A smaller system would positively impact 
engineering efforts to retrofit a laser ignition source to an existing gun system. 
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